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The motivation for this experiment was to model the motion of a complex dynamic system, 

that system being a cart-pendulum apparatus. The ability to model these dynamic systems is 

beneficial in the sense that the behavior of the system can be predicted, typically accurately. 

Once the simulation of the model is confirmed as an accurate representation of the system, 

parameters can easily be changed, and the responses are quick to simulate. To model this 

dynamic system, several system parameters had to be identified for the cart-pendulum. With 

those parameters, the equations of motion were found as non-linear differential equations, 

which were then linearized using Taylor series expansion. Using these equations of motion, 

the dynamic system can be simulated using Simulink, both for the nonlinear equations of 

motion and the linear equations of motion. The mass of the cart and the damping coefficient 

for the cart and pendulum were also calculated using the log decrement method since these 

parameters were unable to be easily measured. The experimental results, nonlinear 

simulation, and linearized simulation were then compared to each other. The results show that 

the spring constant was found to be 118 N/m. Using these values in the simulations yielded 

extremely similar initial responses, however, they undershoot on the rebound, which implies 
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the spring constant is off. They also do not settle as fast, which implies the damping coefficients 

are low. 

Nomenclature 

m1 = mass of cart (kg) 

m2 = mass of pendulum (kg) 

x = linear displacement (m) 

Θ = angular displacement (radians) 

c = linear damping coefficient (kg/s) 

b = angular damping coefficient (kg/s) 

k = spring constant (N/m) 

FP = reaction force of pendulum (N) 

R = length of pendulum rod (m) 

T = torque (N*m) 

I = moment of inertia (kg*m2) 

g = acceleration due to gravity (m/s2) 

ωn = natural frequency (radians/second) 

ωd = damping frequency (radians/second) 

ζ = damping ratio (N/A) 

δ = logarithmic decrement (N/A) 

P = period (seconds) 

uw = uncertainty function 

W = generic function 

f1,f2 = generic functions 

f = generic function 

I.Background 

EING able to model dynamic systems is a useful tool in engineering. Modeling a dynamic system allows 

engineers to essentially predict the behavior of a system, typically using ordinary differential equations. These ordinary 
B 
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differential equations can also be simulated using some software. For this lab specifically, a cart pendulum system 

was analyzed using an optical encoder and a load cell sensor. An optical encoder is essentially a motion sensor that is 

meant to detect rotational (or linear) motion using a light source and photosensitive detectors, and this motion is 

converted into an electrical signal [1]. The optical encoder was used to detect the rotation of the pendulum in this 

system, and the electrical signal that the rotational motion output was recorded using a data acquisition (DAQ) system. 

A load cell is similar to an optical encoder in that it converts something mechanical into an electrical signal, but a load 

cell does this for an applied force [2]. In this case, when the cart was in motion an electrical signal was recorded by 

the DAQ due to the load cell, and the translational motion of the cart could be analyzed. 

II.Experimental Method 

To set up the mass pendulum system for analysis later, care had to be taken in what data was collected and how 

the experiment was set up. Prior to collecting data with a DAQ, some data points were manually collected. The mass 

and length of the pendulum could be directly recorded. The k value of the spring was experimentally calculated by 

applying a known force and measuring displacement. Then the transducer for the cart was calibrated by moving the 

cart a certain distance and recording the voltage from the transducer. 

From there, the recording of experiments began. The cart was held still while the pendulum was swung, then the 

pendulum was removed, and the cart was released from a position. This helped determine the values of the mass of 

the cart and the damping for the cart and pendulum. The system was then recoupled and released from rest. 

Extra experiments were conducted, which included adding mass to the pendulum, tilting the entire frame, and 

bounding the movement of the cart. The data for both the mass position and pendulum angle were recorded and 

exported into a text file to be analyzed at a later time. 

Following the data collection, the equations of motion of the system were determined by analyzing the free-body 

diagrams of the cart and pendulum individually, and they were then linearized using Taylor expansion. With the non-

linear and linear equations of motion known, the motion of the cart pendulum system was then modeled using 

Simulink. 

III.Analysis of Experimental Data 

 System Schematic and Non-Linear Equations of Motion 
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Below the schematic of the cart-pendulum system is shown, along with the free-body diagrams for the cart and 

pendulum individually. 

 

              a)                                                    b)                                                  c) 

Fig. 1 System Schematic (a) and Accompanying Free-Body Diagrams of Cart (b) and Pendulum (c) 

Analyzing Fig. 1b, the equation of motion for the uncoupled cart can easily be obtained. There is only translational 

movement in the horizontal direction, so only the sum of forces acting in the horizontal direction will be considered. 

This equation is shown below. 

 Σ𝐹𝑋,𝑐𝑎𝑟𝑡 = 𝑚1𝑥̈ = 𝐹𝑝 − 𝑘𝑥 − 𝑐𝑥̇ (1) 

 To determine 𝐹𝑝, the translational equation of motion for the pendulum needs to be determined. This is 

accomplished by analyzing the free-body diagram of the uncoupled pendulum shown in Fig. 1c, however, this equation 

of motion is not as simple as the one for the uncoupled cart. Due to this, a more in-depth derivation for this equation 

of motion is shown below. 

 
Σ𝐹𝑥,𝑝𝑒𝑛𝑑 = 𝑚2

𝑑2

𝑑𝑡2
[𝑥 − 𝑅 sin(Θ)] = 𝐹𝑝 

(2) 

 Σ𝐹𝑥,𝑝𝑒𝑛𝑑 = 𝑚2[𝑥̈ − 𝑅Θ̈ cos(Θ) + 𝑅Θ2̇ sin(Θ)] = 𝐹𝑝 (3) 

 In equation 2, as opposed to just having an 𝑥 there is the term 𝑥 + 𝑅 sin(Θ), and this is due to the fact that when 

evaluating the acceleration on a free-body diagram, that acceleration is evaluated at the center of mass of that object. 

Therefore, to account for the acceleration of the pendulum at its center of mass the term 𝑅 sin(Θ) must be added to 

the typical 𝑥 term. 

To relate these translational equations of motion, equation 3 can be substituted into equation 1, because they have 

a shared term 𝐹𝑝, and the translational equation of motion for the system is shown below. 

 Σ𝐹𝑥,𝑠𝑦𝑠𝑡𝑒𝑚 = (𝑚1 +𝑚2)𝑥̈ = −𝑚2𝑅Θ̈ cos(Θ) + 𝑚2𝑅Θ
2̇sin⁡(Θ) − 𝑘𝑥 − 𝑐𝑥̇ (4) 

 
𝑥̈ = (

1

𝑚1 +𝑚2

) [−𝑚2𝑅Θ̈ cos(Θ) + 𝑚2𝑅Θ
2̇sin⁡(Θ) − 𝑘𝑥 − 𝑐𝑥]̇ 

(5) 
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For equation 5, a simple division was performed to isolate the 𝑥̈ term. 

Analyzing Fig. 1c again, it is shown that the pendulum also has a rotational component. Therefore, the rotational 

equation of motion for the pendulum must be derived. The derivation for this equation of motion is shown below and 

is explained following these equations. 

 Σ𝑀 = 𝐼Θ̈ = −𝑇 −𝑚2𝑔𝑅𝑠𝑖𝑛(Θ) − 𝑏Θ̇ (6) 

 𝑇 = (𝑚2𝑥̈)𝑅𝑐𝑜𝑠(Θ) (7) 

 𝐼 = 𝑚2𝑅
2 (8) 

 𝑚2𝑅
2Θ̈ = −(𝑚2𝑥̈)𝑅𝑐𝑜𝑠(Θ) −𝑚2𝑔𝑅𝑠𝑖𝑛(Θ) − 𝑏Θ̇ (9) 

 
𝑚2𝑅Θ̈ = −(𝑚2𝑥̈)𝑐𝑜𝑠(Θ) − 𝑚2𝑔𝑠𝑖𝑛(Θ) −

𝑏Θ̇

𝑅
 

(10) 

 
Θ̈ = (

1

𝑚2𝑅
) [−(𝑚2𝑥̈)𝑐𝑜𝑠(Θ) − 𝑚2𝑔𝑠𝑖𝑛(Θ) −

𝑏Θ̇

𝑅
] 

(11) 

 Equation 6 was determined from a simple analysis of the moments acting on the pendulum, which is again shown 

on the free-body diagram in Fig. 1c. As shown in the equation, the forces acting on the pendulum causing it to rotate 

are a torque, a component of the pendulum’s weight, and the damping caused by the friction at the pin where the 

pendulum is attached to the cart. Equation 7 is a simple definition of torque, which is a force times the perpendicular 

distance, and this now gives the variable for torque in terms of parameters that are known. Equation 8 is the definition 

for the moment of inertia about a fixed point, and it is assumed that the pendulum is rotating about a fixed point (the 

pin), which again provides that term in terms of known and useful parameters. These redefined variables are then 

substituted into equation 6, and that is shown in equation 9. Finally, for simplification purposes, the whole equation 

is divided by the term R, which is the distance of the pendulum’s arm, and doing so produces equation 10 which is 

the equation of motion for the rotation of the pendulum. Equation 10 was determined by performing another simple 

division similar to that in equation 5 to isolate the Θ̈ term. 

 Linear Equations of Motion 

The equations of motion for this system are not linear, as shown by having trigonometric functions and certain 

squared terms in equations 5 and 11. It is not feasible to analytically solve a non-linear ordinary differential equation, 

to they will be linearized using Taylor expansion. The general equation for Taylor expansion is shown below. 
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𝑓(𝑥, Θ) = 𝑓(𝑥0, Θ0) +

𝜕𝑓

𝜕𝑥
|𝑥=𝑥0,Θ=Θ0(𝑥 − 𝑥0) +

𝜕𝑓

𝜕Θ
|𝑥=𝑥0,Θ=Θ0(Θ − Θ0) 

(12) 

In equation 12, the values 𝑥0 and Θ0 are arbitrary and typically small values. For this application, 𝑥0 and Θ0 will 

both be evaluated as 0. Applying equation 12 to equations 5 and 11 will provide the following linear equations of 

motion. The full derivations for these can be found in Appendix A. 

 
𝑥̈ = (

1

𝑚1 +𝑚2

) [−𝑚2𝑅Θ̈ cos(Θ) − 𝑘𝑥 − 𝑐𝑥̇] 
(13) 

 
Θ̈ = (

1

𝑚2𝑅
) [−(𝑚2𝑥̈) − 𝑚2𝑔(Θ) −

𝑏Θ̇

𝑅
] 

(14) 

 

 Parameters 

 The motion of the cart-pendulum system explained by equations 5 and 11 is dictated by a set of parameters 

that describe force and energy-loss components inherent to every dynamic system. Several parameters were 

determined prior to experimentation including the mass of the pendulum (m2) and the length R using a weight scale 

and tape measure respectively. Through the use of a spring scale to measure force and a ruler the spring constant k 

was determined through the linear correlation between force and distance described in equation 15. 

 𝐹 = 𝑘𝑥 (15) 

 

 The remaining parameters required experimental data in order to determine based on a log decrement method. 

Log decrement method describes a data analysis technique in which the peaks of a decreasing sinusoidal graph are 

compared to determine the damping ratio and damped frequency of a simple oscillatory system. By removing the 

pendulum from the slider the system then becomes analogous to the oscillating system as a function of damping ratio 

and damped frequency seen in equation 16. 

 
𝑥̈ + (

1

𝑚1

) [𝑐𝑥 + 𝑘𝑥] ⁡≡ ⁡ 𝑥̈ + 2𝜁𝜔𝑛𝑥̇ + 𝜔𝑛
2𝑥̇  

(16) 

 
𝛿 = ⁡

1

𝑛
ln⁡

𝑥(𝑡)

𝑥(𝑡 + 𝑛𝑃)
 

(17) 

 
𝜁 = ⁡

𝛿

√4𝜋2 + 𝛿2
 

(18) 
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𝑃 = ⁡

2𝜋

𝜔𝑑

 
(19) 

 𝜔𝑑 =⁡𝜔𝑛√1 − 𝜁2 (20) 

 
𝜔𝑛 =⁡√

𝑘

𝑚1

 

(21) 

 𝜁 = ⁡
𝑐

2√𝑘𝑚1

 (22) 

 

The log decrement method seen in equation 17 is the natural log relationship between the amplitude values of 

consecutive peaks in the oscillating system. Using the delta value found in equation 17 the damping ratio can be solved 

for in equation 18. Solving for the damped frequency using the oscillating period in equation 19, the natural frequency 

can then be solved for in equation 20. Lastly, with both the damping ratio  and natural frequency calculation, the mass 

of the slider and the damping coefficient c can be solved for in equations 21 and 22. This same method is replicated 

with the slider held stationary and allowing the pendulum to swing freely in order to determine the damping coefficient 

b in equation 11. 

Below is an example of the log decrement method visualized with the estimated damping curve created using the 

calculated damping ratio and natural frequency. The graph illustrates the analytical precision that the log decrement 

method utilizes to estimate system parameters for damped oscillating motion. 

 

Fig. 2 Visualization of Log Decrement Method 
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IV. Experimental Results 

 System parameters 

As mentioned in the previous experimental methods section, multiple measuring tools and analytical methods were 

used to determine all system parameters describing the dynamic motion of the cart and slider. 

Table 1 System Parameters 

System Parameter Calculated Value Units 

Mass of Slider (m1) 1.04 kg 

Mass of Pendulum (m2) 1.45 kg 

Spring constant (K) 118 
𝑁

𝑚
 

Rod Length (R) 0.368 m 

Angular damping coefficient (b) 0.022 
𝑘𝑔

𝑠
 

Linear damping coefficient (c) 1.50 
𝑘𝑔

𝑠
 

Damping Ratio for Cart (𝜁) 0.0585 [-] 

Natural Frequency for Cart (𝜔𝑛) 12.29 
𝑟𝑎𝑑

𝑠
 

Damping Ratio  for Pendulum(𝜁) 0.0015 [-] 

Natural Frequency for Pendulum (𝜔𝑛) 5.25 
𝑟𝑎𝑑

𝑠
 

 

 Decoupled System 

To find system parameters such as the mass of the cart, and damping for the cart and pendulum, the system was 

decoupled. The results are shown below. 



9 

 

 

Fig. 3 Cart Position of Decoupled System 

 

Fig. 4 Pendulum Angle of Decoupled System 

 

 Coupled System 

For the coupled system, the cart was moved back 68mm from rest and released. Data was recorded until the 

system came to rest. 

 

Fig. 5 Experimental Cart Position of Coupled 

System 

 

Fig. 6 Experimental Pendulum Angle of Coupled 

System 

 

 Tilted System 

 For the tilted system, the frame was tilted ~45°, then the cart was moved to its original rest position then 

released. The data for the pendulum angle was lost, so that will not be shown. 
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Fig. 7 Experimental Cart Position of Tilted System 

 Added Mass System 

For this experiment, a mass was weighed and added to the pendulum. The specific amount of mass added to the 

end of the pendulum was 958 grams. 

 

Fig. 8 experimental Cart Position of Added Mass 

System 

 

Fig. 9 Experimental Pendulum Angle of Added 

Mass System 

 

 Restricted Cart System 

For this experiment, the cart’s movement was restricted with stops on the linear rails. The cart was pulled back 

18mm and released, then recorded until rest. 
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Fig. 10 Experimental Cart Position of Restricted 

Cart System 

 

Fig. 11 Experimental Pendulum Angle of Restricted 

Cart System 

 

\ 

 

 

 

V. Simulink Models 

 Non-linear Simulink Model 

 



12 

 

Fig. 12 Non-linear Simulink Model 

 Linearized Simulink Model 

 

Fig. 13 Linearized Simulink Model 

VI. Modeling Results 

The systems were modeled in Simulink with the equations of motion, then the parameters were set and the 

simulations were run. This was first done with the non-linear simulation as non-linear terms were part of the equations 

of motion. The equations of motion were linearized with Taylor Series Expansion, then modeled and simulated in 

Simulink as well. 

 Coupled System 

 

Fig. 14 Non-linear Simulated Cart Position of 

Coupled System 

 

Fig. 15 Non-Linear Simulated Pendulum Angle of 

Coupled System 
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Fig. 16 Linearized Simulated Cart Position of 

Coupled System 

 

Fig. 17 Linearized Simulated Pendulum Angle 

of Coupled System 

 

 

 

 

 

 

 

 Tilted Model 

 

Fig. 18 Non-linear Simulated Cart Position of 

Tilted System 

 

Fig. 19 Non-Linear Simulated Pendulum Angle of 

Tilted System 

 

 Added Mass Model 
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Fig. 20 Non-linear Simulated Cart Position of 

Added Mass Model 

 

Fig. 21 Non-linear Simulated Pendulum Angle of 

Added Mass System 

 

Fig. 22 Linearized Simulated Cart Position of 

Added Mass System 

 

Fig. 23 Linearized Simulated Pendulum Angle of Added 

Mass System 

 

 

 

VII.Discussion 

 Comparison of Coupled System Results 

1. Cart Position 

For the coupled system, after being released from 68mm, it experimentally rebounds to 55mm, as shown in Fig. 

5. For the non-linear system, it rebounds to 50mm, and the linearized system rebounds to 40mm in Fig. 14 and 16 

respectively. This could be from miscalculations of the mass of the cart or spring constant, but by this point, the 

damping should not have had an effect. The initial response for the experimental, non-linear, and linearized versions 

are extremely similar. A comparison can be seen below in Fig. 24. 
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Fig. 24 Coupled Results Comparison 

Figure 24 above shows roughly the first 10 seconds of the response. The first 5 seconds show an uncanny 

resemblance with the change in peaks for the experimental and non-linear results being almost indistinguishable. 

The linearized version is similar, though it is farther off than the non-linear version. 

 The frequency for all three versions is ~0.8 Hz, which is good, however, the simulations begin to be less 

accurate farther along. Comparing the full response in Fig. 5, 14, and 16 for the position of the cart for the coupled 

system, it can be seen the experimental version has much more damping than either the non-linear or linearized 

version. This implies the value for the damping coefficient for the cart is not what it should be. The experimental 

version settles in ~18 seconds, while the non-linear and linearized versions settle in ~40 seconds. 

2. Pendulum Angle 

 The pendulum angle for the experimental version peaks at ~15 degrees, while the non-linear version peaks at 

~12.5 degrees, and the linearized version peaks at ~10 degrees, as shown in Fig. 6, 15, and 17, respectively. This 

could be due to the inaccuracy of the value used for the radius, as it may not have been at the true center of gravity, 

or the mass of the pendulum was not recorded properly. The spring constant could have also affected the angular 

position, as that feeds back into the angular acceleration by accelerating the cart. 

 The pendulum’s time to settle remains higher for the simulations, similar to the cart’s settling time. This 

could be due to an inaccurate value used for the pendulum damping, though it’s more likely the inaccurate value for 

the carts damping feeding back into the pendulum. 

 Comparison of Tilted System Results 

1. Cart Position 

 The simulation was not remodeled as a linearized simulation; however, the equations of motion were 

remodeled for the non-linear simulation. The frequency for both the experimental and non-linear model is ~0.8 Hz, 
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the same as the standard coupled version, as shown in Fig. 7 and 18, which matches in both the experiment and 

simulation. The cart’s first position peak for the simulation is far more drastic than the experimental version, ~70mm 

rather than 0mm. The initial response’s waveform doesn’t match as closely as with the standard coupled system in 

this case either. However, it does settle to the same value of -50mm for both the experiment and non-linear 

simulation. It is hard to say why this is. Given the waveforms don’t match as well, it may have been a modeling 

error. 

2. Pendulum Angle 

 The experimental pendulum data for the tilted system was lost, so there’s no comparison to make. However, 

when analyzing Fig. 19, the final value it settles to match the angle the frame is tilted, which is what is expected. 

 Comparison of Added Mass System Results 

1. Cart Position 

 The frequency for all three versions is ~0.8 Hz, as shown in the experimental, non-linear, and linearized 

responses in Fig. 8, 20, and 22 respectively. This frequency is the same as the standard coupled version and tilted 

version. However, the initial response is less chaotic than the standard coupled version, which makes sense with 

added mass making it harder to accelerate, therefore being less susceptible to sudden changes in direction. The cart’s 

first position peaks for the different versions match the characteristics of the standard coupled system, with the 

experimental being ~57mm, the non-linear being ~52mm, and the linearized one being ~40mm. The simulations 

also take much longer to settle, implying the damping coefficient from the cart is still too low. 

2. Pendulum Angle 

 Most of what was said for the pendulum angle in the standard coupled version can be said here as well. The 

peak values for the pendulum angle in the non-linear simulation were still lower than the experimental values, as 

shown in the experimental, non-linear, and linearized responses in Fig. 8, 20, and 22 respectively. The peak rebound 

values being ~15 degrees for the experimental, ~12.5 for the non-linear simulation. However, the linearized 

simulation peaks to ~-20 degrees. This is likely due to inaccuracies generated by the linearized model. 

 Discussion of Restricted Cart System 
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1. Cart Position 

 The position of the cart in the restricted system is heavily altered, resembling a square wave graph for the 

first several cycles rather than a sinusoidal graph. An important observation is that the frequency during the 

restricted motion portion resembles that of the unbounded system, however, when the system no longer moves to the 

distance limiting stoppers it settles to a lower frequency of about 0.7 Hz. This indicates that a significant portion of 

the energy is removed in losses during the collisions with the bump stops such that the oscillatory portion of the 

dynamic motion that no longer hits the stops is not identical to the free motion at a similar range of motion. This is a 

critical observation to make because in a situation where modeling was required to represent a system with distance 

constraints it would not be accurate to assume free motion and apply a square wave at the point of distance 

limitation. 

2. Pendulum Angle 

 The pendulum in the restricted motion system did not exhibit the same directional changes as the free motion 

system. Where the original model would have varying peaks and change its direction frequently, the restricted 

motion moved in an almost linear trend from one peak to the next extremely quickly. Similar to how the cart was not 

representative of the original coupled system, the pendulum motion is not represented accurately under the 

assumption that a restricted distance would not alter the dynamic pattern.  

 Uncertainty 

Uncertainty is present in all the experimental calculations due to the resolution of all measuring devices as well as 

potential inevitable system noise. In this experiment, the load cell roughly has an uncertainty of about 0.02% [2]. 

Other sources of uncertainty that are difficult to quantify can be found in friction along the rods and in the pendulum 

joint as well as assumptions in the system that are not represented in the real world, for example, the assumption of a 

massless spring is impossible and difficult to quantify in the dynamic equations. Determining the uncertainty of each 

measuring device and compounding uncertainty propagation allowed for the calculation of uncertainty for all 

parameters displayed in table 2 below. Note that the largest error is noted in the spring constant, partially due to the 

relative size of the parameter compared to the other values, but more notably due to the inaccurate measuring devices 

used to estimate the value. On the contrary, the angular damping coefficient has the smallest relative uncertainty due 

to the accuracy of the mass of the pendulum calculation found using a mass scale. These differences highlight the 

importance of utilizing high accuracy measuring devices to prevent uncertainty propagation from significantly altering 
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the confidence of experimental data. Uncertainty propagation was determined using the method of partial 

differentiation according to equation 23 below, and the consecutive equations describe the exact uncertainty equations 

used for each of the calculated parameters [4]. 

 

𝑢𝑤 = ±√∑(
𝜕𝑊

𝜕𝑥𝑖
𝑢𝑖)

2

𝑛

𝑖=1

 

(23) 

 
𝑢𝑘 = √(

1

𝑥
𝑢𝐹)

2 + (
𝐹

𝑥2
𝑢𝑥)

2 

(24) 

 
𝑢𝑚1

=
1

𝜔𝑛
2
𝑢𝑘 

(25) 

 
𝑢𝑐 =

𝜁

√𝑘𝑚1

√(𝑘𝑢𝑚1
)2 + (𝑚1𝑢𝑘)

2 
(26) 

 𝑢𝑏 = 2𝜁𝜔𝑛𝑢𝑚2
 (27) 

 

Table 2 System Parameters Uncertainty’s 

System Parameter Uncertainty (±) Units 

Mass of Slider (m1) 0.0132 kg 

Mass of Pendulum (m2) 0.0005 kg 

Spring constant (K) 2 
𝑁

𝑚
 

Rod Length (R) 0.05 in 

Linear damping coefficient (c) 0.0135 kg/s 

Angular damping coefficient (b) 7.7⁡𝑋⁡10−6 kg/s 

 

VIII. Conclusions and Recommendations 

 System Parameters 

Utilization of the log decrement method allowed for experimental data to dictate the majority of system parameters 

required to accurately model the system. This method introduced a higher probability of error and is likely responsible 
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for a significant amount of deviation from the modeled systems. For example, when calculating the delta value in the 

log decrement method, three separate uncoupled slider motion readings were utilized, each of which provided varying 

results that increased proportion to the increase in initial distance. This indicates that there are likely other non-linear 

energy losses in the system that are not accounted for in the system of equations we generated. Other manual 

calculations, in specific the spring constant were likely sources of deviation due to the method of calculation. Fig. 2 

highlights the presence of error sources in the system by visualizing the exponentially decreasing envelope generated 

from the log decrement method. Several peaks of the experimental data are not restrained in the envelope, indicating 

that the system is not fully described by the equations of motion proposed by the theoretical calculations.  

 Non-linear System 

The non-linear system did a good job of representing the system as the waveform’s initial response in all 

experiments was almost indistinguishable from the experimental data. The frequency was also fairly close. However, 

the peak response and long-term response were a bit off. The peak response would likely be due to inaccurate values 

used for the mass of the components and the spring constant, as the dampers wouldn’t have much effect during a short 

duration. This is compounded by the fact the settling time for the cart and pendulum were longer, meaning that 

damping constants needed to be higher, which would lower the peak values even more. The accurate initial response 

leads to the conclusion that the system was modeled correctly, however, the peaks and settling time being incorrect 

likely means the parameters were inaccurate, or that something else isn’t being considered. 

 Linearized System 

Most of what was said in the non-linear section remains true for the linearized version, with the main conclusion 

being that the difference in peaks and settling time was likely due to inaccurate parameter values. However, the 

linearized system was even farther off from the experimental data than the non-linear data. This leads to the conclusion 

that the linearized model is a compromise. This means that while the values are likely simpler to calculate as you can 

remove non-linear terms, you trade that off for some accuracy, at least in this case. 

 Recommendations 

Some recommendations to improve the methods and results of this lab would be to try and find a better position 

for the ruler used to measure the distance the cart was traveling. It was difficult to ensure the cart was being moved 

the desired distance, both while calibrating the cart as well as when taking the actual data of the cart’s movement. This 
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could have provided some inaccurate parameter values since the data provided from the motion of the cart was used 

when calculating some parameters with the logarithmic-decrement method. Another potential recommendation would 

be to take the effective mass of the spring into account. During this analysis, the spring was essentially treated as 

massless, which is obviously not true. If the effective mass of the spring was determined, that could be taken into 

account (assuming it was not negligibly small), and a more accurate system simulation could be conducted, as well as 

receiving more accurate parameters. Furthermore, the spring gauge was difficult to hold still while compressing the 

spring to determine its spring constant. To improve this, the spring gauge could be hooked or attached to the frame so 

the force needed to compress the spring and displacement of the spring could easily be recorded, allowing for a more 

accurate spring constant value.  

 

 

 

 

 

 

 

 

Appendix 

A. 

The following equations show the derivation for the linearized equations of motion, starting with the translational 

equation of motion. The general equation used to linearize these can be found in equation 12.  

 
𝑓1(𝑥, Θ) = 𝑥̈ = (

1

𝑚1 +𝑚2

) [−𝑚2𝑅Θ̈ cos(Θ) + 𝑚2𝑅Θ
2̇sin⁡(Θ) − 𝑘𝑥 − 𝑐𝑥]̇ 

A1 

 
𝑥̈ = (

1

𝑚1 +𝑚2

) [−𝑚2𝑅
𝑑2

𝑑Θ2
Θ cos(Θ) + 𝑚2𝑅

𝑑

𝑑Θ
Θ2sin⁡(Θ) − 𝑘𝑥 − 𝑐

𝑑

𝑑𝑥
𝑥]
̇

 
A2 

 𝜕𝑓1
𝜕𝑥

|
𝑥=𝑥0,Θ=Θ0

(𝑥 − 𝑥0) = {(
1

𝑚1 + 𝑚2

) [−0 + 0 − 𝑘 − 𝑐
𝑑

𝑑𝑥
]}(𝑥 − 0) 

A3 
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 𝜕𝑓1
𝜕𝑥

|
𝑥=𝑥0,Θ=Θ0

(𝑥 − 𝑥0) = (
1

𝑚1 + 𝑚2

) [−𝑘𝑥 − 𝑐𝑥̇] 
A4 

 𝜕𝑓1
𝜕Θ

|𝑥=𝑥0,Θ=Θ0(Θ − Θ0) = {(
1

𝑚1 +𝑚2

) [−𝑚2𝑅
𝑑2

𝑑2Θ
cos(0) − 0 + 0 + 0 − 0 − 0]}(Θ − 0) 

A5 

 𝜕𝑓1
𝜕Θ

|𝑥=𝑥0,Θ=Θ0(Θ − Θ0) = (
1

𝑚1 +𝑚2

) [−𝑚2𝑅Θ̈] 
A6 

 
𝑥̈ = (

1

𝑚1 +𝑚2

) [−𝑚2𝑅Θ̈ − 𝑘𝑥 − 𝑐𝑥]̇ 
A7 

 
𝑓2(𝑥, Θ) = Θ̈ = (

1

𝑚2𝑅
) [−(𝑚2𝑥̈)𝑐𝑜𝑠(Θ) − 𝑚2𝑔𝑠𝑖𝑛(Θ) −

𝑏Θ̇

𝑅
] 

A8 

 
Θ̈ = (

1

𝑚2𝑅
) [−(𝑚2

𝑑2

𝑑𝑥2
𝑥) 𝑐𝑜𝑠(Θ) − 𝑚2𝑔𝑠𝑖𝑛(Θ) −

𝑏
𝑑
𝑑Θ

Θ

𝑅
] 

A9 

 𝜕𝑓2
𝜕𝑥

|
𝑥=𝑥0,Θ=Θ0

(𝑥 − 𝑥0) = (
1

𝑚2𝑅
) {−[(𝑚2

𝑑2

𝑑𝑥2
) 𝑐𝑜𝑠(0) − 𝑚2𝑔𝑠𝑖𝑛(0) − 0]}(𝑥 − 0) 

A10 

 𝜕𝑓2
𝜕𝑥

|
𝑥=𝑥0,Θ=Θ0

(𝑥 − 𝑥0) = (
1

𝑚2𝑅
) (−𝑚2𝑥̈) 

A11 

 
𝜕𝑓2
𝜕Θ

|𝑥=𝑥0,Θ=Θ0(Θ − Θ0) = (
1

𝑚2𝑅
) {−[(𝑚2

𝑑2

𝑑𝑥2
0) 𝑠𝑖𝑛(0) − 𝑚2𝑔𝑐𝑜𝑠(0) −

𝑏
𝑑
𝑑Θ
𝑅

]}(Θ − 0) 

A12 

 𝜕𝑓2
𝜕Θ

|𝑥=𝑥0,Θ=Θ0(Θ − Θ0) = (
1

𝑚2𝑅
) [−𝑚2𝑔(Θ) −

𝑏Θ̇

𝑅
] 

A13 

 
Θ̈ = (

1

𝑚2𝑅
) [−(𝑚2𝑥̈) − 𝑚2𝑔(Θ) −

𝑏Θ̇

𝑅
] 

A14 
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